Air stable p-doping of WSe2 by covalent functionalization.

نویسندگان

  • Peida Zhao
  • Daisuke Kiriya
  • Angelica Azcatl
  • Chenxi Zhang
  • Mahmut Tosun
  • Yi-Sheng Liu
  • Mark Hettick
  • Jeong Seuk Kang
  • Stephen McDonnell
  • K C Santosh
  • Jinghua Guo
  • Kyeongjae Cho
  • Robert M Wallace
  • Ali Javey
چکیده

Covalent functionalization of transition metal dichalcogenides (TMDCs) is investigated for air-stable chemical doping. Specifically, p-doping of WSe(2) via NOx chemisorption at 150 °C is explored, with the hole concentration tuned by reaction time. Synchrotron based soft X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) depict the formation of various WSe(2-x-y)O(x)N(y) species both on the surface and interface between layers upon chemisorption reaction. Ab initio simulations corroborate our spectroscopy results in identifying the energetically favorable complexes, and predicting WSe(2):NO at the Se vacancy sites as the predominant dopant species. A maximum hole concentration of ∼ 10(19) cm(-3) is obtained from XPS and electrical measurements, which is found to be independent of WSe(2) thickness. This degenerate doping level facilitates 5 orders of magnitude reduction in contact resistance between Pd, a common p-type contact metal, and WSe(2). More generally, the work presents a platform for manipulating the electrical properties and band structure of TMDCs using covalent functionalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Air-Stable n-Doping of WSe2 by Anion Vacancy Formation with Mild Plasma Treatment.

Transition metal dichalcogenides (TMDCs) have been extensively explored for applications in electronic and optoelectronic devices due to their unique material properties. However, the presence of large contact resistances is still a fundamental challenge in the field. In this work, we study defect engineering by using a mild plasma treatment (He or H2) as an approach to reduce the contact resis...

متن کامل

Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry.

Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)-a layered two-dimensional semiconductor-exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent ...

متن کامل

Degenerate n-doping of few-layer transition metal dichalcogenides by potassium.

We report here the first degenerate n-doping of few-layer MoS2 and WSe2 semiconductors by surface charge transfer using potassium. High-electron sheet densities of ~1.0 × 10(13) cm(-2) and 2.5 × 10(12) cm(-2) for MoS2 and WSe2 are obtained, respectively. In addition, top-gated WSe2 and MoS2 n-FETs with selective K doping at the metal source/drain contacts are fabricated and shown to exhibit low...

متن کامل

Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.

We have created stable dispersions of single wall carbon nanotubes (SWNTs) in water by employing a noncovalent functionalization scheme that allows carboxylic acid moieties to be attached to the SWNT surface by a pi-pi stacking interaction. Pyrenecarboxylic acid (PCA) is noncovalently attached to the surface of SWNTs and affords highly uniform and stable aqueous dispersions. This method was dev...

متن کامل

Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

Structural changes of few-layer graphene sheets induced by CF4 plasma treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene sheets subjected to prolonged CF4 plasma treatment while plasma treatment with short time only leads to fluorine functionalization on the surface la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 2014